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Molecular dynamics and other molecular simulation methods rely on a potential energy function,
based only on the relative coordinates of the atomic nuclei. Such a function, called a force field,
approximately represents the electronic structure interactions of a condensed matter system. Devel-
oping such approximate functions and fitting their parameters remains an arduous, time-consuming
process, relying on expert physical intuition. To address this problem, a functional programming
methodology was developed that may enable automated discovery of entirely new force field func-
tional forms, while simultaneously fitting parameter values. The method uses a combination of
genetic programming, Metropolis Monte Carlo importance sampling and parallel tempering to effi-
ciently search a large space of candidate functional forms and parameters.

The methodology was tested using a non-trivial problem with a well-defined globally optimal so-
lution: a small set of atomic configurations was generated and the energy of each configuration was
calculated using the Lennard-Jones pair potential. Starting with a population of random functions,
our fully-automated, massively parallel implementation of the method reproducibly discovered the
original Lennard-Jones pair potential by searching for several hours on 100 processors, sampling
only a minuscule portion of the total search space. This result indicates that, with further improve-
ment, the method may be suitable for unsupervised development of more accurate force fields with
completely new functional forms.
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I. INTRODUCTION

Classical molecular dynamics [MD] and other molec-
ular simulation methods have found broad application
in many areas of science and technology, including the
nanoscale design of synthetic materials, and understand-
ing structure and function of biomolecules. All such sim-
ulations require accurate and computationally efficient
force fields, functions that calculate energy and forces of
the system from a set of atomic coordinates.

Currently used force fields represent extensive work in
invention and validation. The functional forms of force
fields are chosen based on physical intuition; their pa-
rameters (i.e. multiplicative constants, exponents, etc.)
are then adjusted to achieve a good fit to selected prop-
erties. Each such process, done manually, can take many
man-years of highly qualified labor, and often meets with
failure.

With increasing interest in predicting the detailed
quantitative behavior of real condensed matter systems,
there is a growing need for more complicated functional
forms. Such functional forms must be better able to rep-
resent the intricacies of the, possibly changing, electronic
structure. It is difficult, if not impossible, to develop an
intuition for the relationships between the complicated
functions and the ever-expanding training set of mate-
rial data.

An automated functional form optimization method is
clearly called for. We wish to extend the search beyond
parameter-only optimization and use unsupervised ma-
chine algorithms to refine the functional form as well. To

do this, we have adopted and combined state-of-the-art
ideas from the field of evolutionary computing. In the fol-
lowing section we introduce the concept of a force field,
including the Lennard-Jones pair potential that is the
subject of the current study. In Section III we describe
our search algorithm in detail. In Section IV we describe
how our method successfully discovered the Lennard-
Jones pair potential. We conclude with a discussion of
how the method may be applied to the development of
more complex force fields.

II. BACKGROUND

Molecular simulation methods use a force field to de-
scribe the potential energy surface of a group of atoms.
The force field can most generally be written as an ex-
pansion in multi-body interaction terms. Each n-body
term is a functional expression that returns the energy
due to a group of n atoms, with the total potential en-
ergy summed over all available groups and all multi-body
terms,

Econf (r1, ..., rN ) =
∑

<i,j>

u2(ri, rj) +

∑
<i,j,k>

u3(ri, rj , rk) + .... (1)

The sums are over all spatially proximate groups of n
atoms i.e. the interactions between atoms separated by
more than some finite distance is assumed to be negligi-
ble. The resulting scalar is the potential energy of the
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system; spatial derivatives of the potential energy with
respect to individual atomic coordinates give the force
vectors acting on the respective atoms. The individual
multi-body terms are functions of the coordinates of the
n atoms, with parameter values that depend on the iden-
tities of the atoms. Hence a full definition of a particular
force field requires specification of a set of multi-body
functional forms as well as the parameters values that
are to be used for each combination of atom types.

Most commonly used force fields carry only a few terms
of the full expansion. For example, the Coulombic po-
tential can be represented by a particular 2-body term,
dependent only on the scalar distance between pairs of
atoms:

u2,C(ri, rj) =
qiqj

4πε0rij
(2)

rij = ‖rj − ri‖. (3)

The parameter qi here denotes the electrostatic charge
of particle i. It should be noted that because of the
slowly-decaying form of the Coulombic potential, the in-
teraction between particles at large separations is usually
calculated using special techniques such as Ewald sum-
mation.

A system of particles, interacting via harmonic springs,
can also be represented using just a 2-body term:

u2,H(ri, rj) = kijr
2
ij , (4)

where the parameter kij is the spring constant between
particles i and j. Though both of these force field func-
tional forms use the same order term and describe inter-
actions between pairs of atoms in terms of the relative
distance, they are quite distinct in functional form and
use different parameters. Another purely 2-body force
field functional form that is widely used for condensed
matter systems is the Lennard-Jones pair potential1:

u2,LJ(ri, rj) = 4ε

{(
σ

rij

)12

−
(

σ

rij

)6
}

, (5)

where ε and σ are energy and length parameters, respec-
tively. This simple function represents both the Pauli ex-
clusion repulsion between valence shell electrons at short
separations as well as the attractive interaction between
induced dipoles at larger separations. In the current work
we use the Lennard-Jones force field function to test our
methodology.

To meet increasingly stringent requirements for the
quantitative description of condensed matter systems,
force field functional forms have necessarily become more
complex and include higher-order terms in the expan-
sion. For example, cubic crystalline solids represented
by a purely 2-body force field functional form have shear
elastic constants that are exactly equal, C12/C44 = 1,
whereas in most metals this ratio is substantially greater
than unity. Overcoming this limitation was a key fac-
tor in the widespread adoption of the embedded-atom

(a)Abstract Tree

(b)Specific example

FIG. 1: (a) Graphical tree representation of a genetic program
F (G(x, y), H(z), c). The arrows indicate the data flow sense.
(b) A particular instance of the program xy + ‖z‖+ 2.

method force field functional form for metals2. In gen-
eral, identification of appropriate force field functional
forms represents a great challenge to the molecular sim-
ulation community. Force field development remains an
art with very few successful practitioners3,4.

While a great need exists for a more fully automated
approach, most algorithmic research has been confined to
parameter optimization of existing functional forms5–10.
Several groups have avoided the issue of functional forms
entirely, relying on purely numerical representations of
the potential energy surface using tabulated values or
spline functions11,12. Our strategy is intermediate be-
tween these two extremes. We still wish to rely on a
functional form, but we would like the choice of func-
tional form to be part of the automated optimization
process. In the following section we describe in detail a
new systematic method for unsupervised search for opti-
mal force field functional forms.

III. METHOD

Our method uses an operator tree representation of
the force field functional form, and a novel optimization
algorithm which combines an evolutionary optimization
approach with parallel tempering. The definition of the
fitness function, while fairly straightforward, is also de-
scribed for completeness.
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A. Tree Representation

The genetic programming methodology was originally
developed by Koza13,14 to enable automatic generation
of computer programs. The method represents a func-
tion as a tree of elementary operators, as depicted in
Figure 1(a). The nodes of the tree can be of three basic
types: elementary operators, input variables, and con-
stant parameters. In Figure 1(b), the “ + ” operator is
an elementary operator, x is an input variable, and 2 is
a constant parameter. Input variables refer to function
arguments, labeled by a variable name. The depth level
of a node denotes the number of steps to the root node.
The node containing “ ∗ ” lies at depth level 2.

The trees are used to compute whatever quantities are
required by the fitness function. In the current study,
each tree was used to compute the energy of a pair of
atoms separated by a given distance. Constant parame-
ters were restricted to integers on the range [−20, 20]. El-
ementary operators were restricted to the following set of
simple arithmetic operators: addition +, subtraction −,
multiplication ∗, division /, exponentiationˆ, and abso-
lute value | |. More generally, the genetic programming
representation can use any elementary operators that can
be expressed as a computer program with well-defined in-
puts and outputs.

B. Fitness

The fitness of a tree is a numerical measure of how
well the output of a tree reproduces the data in a train-
ing set. In the work presented here, the training set
consists of 10 configurations of 10 particles, placed in
a three-dimensional domain. An energy was computed
for each configuration using the Lennard-Jones pair po-
tential given by Eq. 5,

Econf =
∑

<i,j>

u2,LJ(ri, rj). (6)

The configuration domain had dimensions of 3σ×3σ×
3σ, where σ is the Lennard-Jones distance parameter.
The particles were placed randomly in the domain, but
no particles were allowed to come closer than 0.5σ. All
pair distances in the range 0.7σ < r < 2.0σ were recorded
and used to compute the target configuration energy, tak-
ing periodic images into account. The values of σ and ε
were set to unity. This resulted in about 60 pair distances
per configuration. The training set consisted of the set
of pair distances and the corresponding configuration en-
ergy. By varying the random number seed, we generated
four independent training sets.

The fitness of a tree was determined by comparing each
configuration energy calculated by the tree with the con-
figuration energy calculated by the Lennard-Jones pair
potential. The configuration energy for a particular tree

was computed as:

Ẽconf =
∑

<i,j>

ẽij(rij), (7)

where, ẽij(r) is the value generated by the tree given the
input value r. The fitness of the tree was then defined to
be the negative square error, averaged over all configura-
tions,

F = − 1
Nconf

Nconf∑
conf=1

(Ẽconf − Econf )
2
, (8)

where the negative sign was required to have the fitness
increase with decreasing error.

The purpose of this study was to test whether the
approach was capable of discovering compact force field
functions that accurately represent the potential energy
surface of condensed matter systems. Typically, infor-
mation about the energy surface is obtained from quan-
tum mechanics calculations that estimate the energy of
small configurations of atoms. The training set used in
the current study was relatively simple but it nonetheless
captured some of the characteristics of real training sets
used for force field development.

C. Evolutionary Optimization Algorithm

Evolutionary optimization algorithms operate on pop-
ulations of objects using bio-mimetic principles of natural
selection14. In each new generation, parent objects form
offspring, and the fittest offspring form the new popula-
tion. In the case of genetic programming, the high-level
strategy builds a population of random operator trees
and iteratively refines the population using tree evolution
operators to generate new offspring trees, which may or
may not be admitted into the new generation.

Evolution proceeds in three stages: generation, muta-
tion, and testing. The first stage produces Nt new trees
from Nt old trees. The second stage randomly mutates
some of these trees. The third stage compares the fitness
of each of the Nt new trees with that of the old trees and
admits either the new one or the old one into the new
generation.

In the generation stage, each of the Nt new trees is
created either by pass-through or crossover, with equal
probability. Pass-through selects the fittest tree the first
time, the second fittest tree the second time, and so on,
copying them into the new population without modifica-
tion. Cross-over creates a new tree by combining two par-
ent trees selected from the old population (Figure 2(c)).
Each of the two parents is chosen via tournament selec-
tion: four trees are chosen with equal probability from
the old population, and the tree with highest fitness is
selected. To perform crossover using the two parents, a
depth level is selected for the first parent, with the re-
striction that the node is not the root or at maximum
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(a)Original tree

(b)Mutation

(c)Crossover

FIG. 2: Tree evolution operators are illustrated. The original
tree (a) is evolved to tree (b) by a mutation of the ∗ operator
to the + operator. Tree (c) is generated by cross-over of trees
(a) and (b); the ‖z‖ branch of (a) is replaced by the x + y
branch of the tree (b).

depth. A depth level is then selected for the second par-
ent, with the same restrictions. A randomly chosen sub-
tree, rooted at the selected depth level, is then cut from
the first parent, and replaced with a randomly chosen
sub-tree, rooted at the selected depth level in the second
parent, producing one new child tree containing parts of
both parents.

In the mutation stage (Figure 2(b)), each new tree is
either mutated or left unchanged, with equal probability
and without regard for fitness or how the tree was cre-
ated. The node is selected with equal probability from all
nodes, meaning that there is a higher probability to select
a node near the leaves than to select a node near the root.
This is done to give a preference for small adjustments
to the parameter nodes rather than drastic changes to
the entire functional form. The sub-tree rooted at the
selected node is deleted and a new random sub-tree is
generated. Thus, the new generation is composed of four

FIG. 3: Graphical representation of a parallel tempering al-
gorithm with replicas marked with their individual tempera-
tures.

different categories of tree, occurring in roughly equal
numbers: those made by crossover alone, those made by
crossover and mutation, those made by mutation alone,
and those retained from the previous generation.

In the testing stage, the old trees, ordered by fitness,
and the new trees, which are in the order they are cre-
ated, are compared pairwise. Each old tree is compared
against the new tree in the same position in the list, and
one or the other is chosen for the new generation. If the
fitness of the new tree is higher than that of the old one
the new tree is always chosen. If the new tree fitness is
lower, then it is chosen with the Boltzmann probability:

Pacc = min
{
1, exp

[(
Fnew − F old

)
/T

]}
, (9)

where F old and Fnew are the fitnesses of the old and new
trees, respectively (8). T is the effective temperature, a
non-physical parameter, used to improve search efficiency
(see Section III D below). At high effective temperatures,
most new trees are accepted, even if their fitness is poor,
favoring efficient exploration of the search space. At low
effective temperatures, only trees with improvements or
small decreases to fitness are accepted, favoring incre-
mental improvement. By separating these two activities
into different populations using the parallel tempering
technique described next, we achieve simultaneous ex-
ploration and incremental improvement.

D. Parallel Tempering

Parallel tempering (PT) was originally introduced by
Swendsen and Wang15 to deal with the local traps of a
spin glass energy surface. Their technique uses N replicas
of the system, each at a different temperature, and ex-
changes partial state information between replicas. The
fundamental idea is to use the high-temperature replicas
to sample the system phase space at a coarse level with
the low-temperature replicas refining the states in local
traps. In this way, a hybrid of local and global sam-
pling can be achieved. Later changes to the method re-
place partial information exchange with a complete state
swap. Many parameters of the method have come under
scrutiny16.

In our method, a single replica consisted of a popula-
tion of operator trees. After each generation, each popu-
lation attempted to exchange one tree with its left neigh-
bor in the temperature space (Figure 3) and then one tree
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with its right neighbor. The trees to be swapped were se-
lected with equal probability from the entire population
of the respective replicas. A swap was accepted with a
probability based on the relative Boltzmann weights of
the two trees,

Pacc = min{1,

exp [(1/Ti − 1/Ti+1) (Fi+1 − Fi)]}, (10)

where Fi is the fitness of the tree selected in population i
at a temperature Ti. If the swap had the effect of moving
the fitter tree to the lower temperature, the swap was
always accepted. Otherwise, the acceptance probability
decreased exponentially with increasing fitness difference.

IV. RESULTS

The calculations were run on a cluster of 100 AMD
Opteron 2.2 GHz processors with Quadrics interconnects.
We ran two different parallel tempering optimizations,
with either Nt = 10, 000 or Nt = 50, 000 individual trees
in each replica. In both cases, we used 200 replicas with
temperatures distributed logarithmically from 0.1 to 10
(the units of temperature were the same as those of the
fitness function i.e. ε2). All trees were required to have
minimum depths of 3 and maximum depths of 4.

For the runs with 10,000 individuals per replica, each
generation required about 100 seconds. For runs with
50,000 individuals, the time per generation was about 5
times longer. Most of this time was spent in the evalua-
tion of configuration energies.

The results of the runs were stochastic, both due to
the initial conditions and the optimization method, and
so we see a distribution of behaviors. However, all but
one of the runs successfully found an arithmetic equiva-
lent of the original target function. Three such algebraic
equivalents are displayed in Figure 4.

Figure 5(a) shows the average square error for the
fittest tree in each generation. The dashed lines indi-
cate four independent runs with Nt = 10, 000 individ-
uals per replica, each run using different initial popula-
tions and different training sets. The solid lines indicate
four independent runs with Nt = 50, 000 individuals per
replica, each using different initial populations and the
same training sets used for the first four runs.

Of the four independent runs with Nt = 10, 000,
three of them successfully found arithmetic equivalents of
the Lennard-Jones pair potential. The residual average
square error of approximately 10−9ε2 can be attributed to
finite machine precision. The fourth run failed to find an
arithmetic equivalent, even after 400 generations. How-
ever, it did find several functions that were good approx-
imations to the Lennard-Jones pair potential, but have
quite different functional forms (see the tree shown in
Fig. 4(d)).

In the case of the larger populations, Nt = 50, 000,
all four runs found arithmetic equivalents and did so in

(a)Lennard-Jones equivalent tree 1

(b)Lennard-Jones equivalent
tree 2

(c)Lennard-Jones equivalent tree 3

(d)Near-miss tree with high fitness value.

FIG. 4: Lennard-Jones equivalent trees and a near miss. The
trees shown in (a), (b), and (c) are algebraically equivalent
to the Lennard-Jones form. The tree shown in (d) produces
a function that replicates the Lennard-Jones pair potential
numerically over the range of interest with error less then

10%. The function represented in (a) is [r−13−r−7][r1+19r]

‖ 0
r
‖+‖5‖×1

,

(b) is ‖ −4
r12 ‖−‖−4

r6 ‖, and (c) is (‖r−12‖− (r +0)−5−1)× (‖‖−
4‖‖ − (−4 − (−4)) × rr), all of which reduce to 4(r−12 −
r−6). The function represented in (d) reduces to 7

10+r/17
(6−

r2)(r−12 − r−5), a good approximation to the Lennard-Jones
pair potential
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(a)Average square error for a series of runs.

(b)Average square error for a single run.

FIG. 5: Convergence of the average square error (negative
fitness) of the fittest tree in each generation, (a) all eight
runs. There are four independent runs with Nt = 10,000
(dashed lines) and four independent runs with Nt = 50,000
(solid lines). In all but one case an algebraic equivalent of the
Lennard-Jones pair potential was found. (b) One of the Nt

= 10,000 runs in more detail.

roughly five times fewer generations. Apparently, adding
more individuals speeds up the search rate proportion-
ately.

Figure 5(b) shows how one of the Nt = 10, 000 runs
progressed. Initially fitness improved quite steadily, un-
til a good approximation to the exact Lennard-Jones pair
potential was found. After this point, further improve-
ment occurred only sporadically. Eventually, the arith-
metic equivalent of the target entered the population.

V. DISCUSSION

The problem of finding the correct tree in the space of
all possible trees of a given size is made difficult by the
sheer size of the search space. Our algorithm, starting
with an initial total population of ∼ 107 trees, in most
cases found the global optimum in less than 100 genera-
tions. This provides an upper bound for the number of
trees surveyed equal to 109.

To assess the efficiency of the search method, we can
compare this figure to the total number of possible trees
of depth 4. For simplicity, we ignore the unary operator
| | and ignore trees that are not maximal. Then, for M
binary operators, and a maximum depth of K, the lower
bound of the number of possible trees at operator-only
level is given by:

Nop = M ×M2 × ...M2K−1
=

K−1∏
k=0

M2k

.

The number of leaves holding integer constants on the
range [−P, P ] or the input variable is given by

Nval = (2P + 2)2
K

.

In our case K = 4,M = 5, and P = 20, and so the total
number of possible trees is,

Ntree = Nval ×Nop = 4216 × 515 = 2.9× 1036.

Clearly, finding the global optimum in such a large space
is a challenging problem, especially given that the space
is likely to be very heterogeneous, with many local traps,
and roughness on many scales. Exhaustive enumeration
of all possible trees is not computationally feasible. The
above estimates indicate that the ratio of the total num-
ber of trees to the number of surveyed trees is at least
1027. We were able to accomplish the task of finding
the needle in this particular haystack by sampling only
a minuscule fraction of all possible trees. We succeeded
in our unsupervised automated search for a functional
form partly because we used a very robust optimization
method and relatively large computational resources. We
also speculate that the large-scale fitness landscape may
have a convex funnel-like shape. This would tend to fa-
cilitate gradual progress towards the global optimum, de-
spite the numerous local traps.

It is important to emphasize that while the manufac-
tured test problem used in this study had a known solu-
tion, it nonetheless was representative of many potential
energy surfaces where accurate functional forms are un-
known. We deliberately chose a training set that closely
resembled data generated by quantum density functional
theory energy calculations, because this type of data is
often used to develop new force fields.

Given the success of the method in the current study,
we now intend to apply the method to some of the many
condensed matter systems for which existing force fields
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have been found deficient. A material of particular in-
terest is bulk germanium. Despite its chemical similarity
to silicon, for which several accurate force fields exist, no
force field of comparable accuracy has been found for ger-
manium. In particular, all of the commonly used germa-
nium force fields fail to provide an adequate description
of the solid-liquid coexistence line17.

In order to use this new methodology to develop new
force fields for systems of practical interest, we will have
to extend the existing implementation in several ways.
The allowable range for parameter values will be ex-
tended to the set of all (machine-representable) real num-
bers. The space of operator trees will be extended to
include 3-body interactions, and eventually to even more
complicated forms. The training sets will be extended
to include additional properties such as elastic constants,
structural properties, and forces on individual atoms. All
of this extra complexity is necessary, but it also presents
two risks. Firstly, the search space may become so large
that it may be difficult or impossible to find a good fit
to the training set. Secondly, even if a good fit is found,
the resultant force field may not be sufficiently accurate
for atomic configurations not included in the training set.
This second problem is related to the important issue of
transferability: can a force field be used to predict prop-

erties other than those to which it was fit?
Our methodology opens access to a vast search space

of generic functional forms. We warn however that un-
restrained use of generality can lead to an uncontrollable
explosion in the size of this space. An understanding of
the symmetries of a particular physical problem can be
instrumental in reducing the size of the search space and
therefore improving the efficiency of the method. By ju-
dicious combination of physical intuition and algorithmic
flexibility, significant control can be achieved in tuning
the method to produce novel functional forms for atom-
istic force fields.
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